Growth Opportunities in Neuromorphic Computing 2025-2030 | Neuromorphic Technology Poised for Hyper-Growth as Market Surges Over 45x by 2030

Strategic Investments and R&D Fuel the Next Wave of Growth in Neuromorphic Computing


Dublin, April 18, 2025 (GLOBE NEWSWIRE) -- The "Neuromorphic Computing Market by Offering (Processor, Sensor, Memory, Software), Deployment (Edge, Cloud), Application (Image & Video Processing, Natural Language Processing (NLP), Sensor Fusion, Reinforcement Learning) - Global Forecast to 2030" report has been added to ResearchAndMarkets.com's offering.

The neuromorphic computing market was worth approximately USD 28.5 million in 2024 and is estimated to reach USD 1.32 billion by 2030, growing at a CAGR of 89.7% between 2024 and 2030.

The demand for real-time data processing and decision-making capabilities in edge computing drives the adoption of neuromorphic computing. The increasing requirements to process real-time massive data for applications related to industrial automation, autonomous driving, and monitoring with a capability to make instantaneous decisions are making neuromorphic computing increasingly in demand.

Moreover, the semiconductor industry is facing challenges in continuing to double the transistor count on ICs. The miniaturization of ICs faces issues such as current leakage, overheating, and other quantum mechanical effects, driving the urgent need for alternative approaches like neuromorphic technology to enhance computational power.



Software segment to exhibit the highest CAGR during forecast period

Software segment is anticipated to hold the highest CAGR in the Neuromorphic computing market, as software allows live data streaming rather than static data, which makes them an attractive market for deep learning. Neuromorphic computing compares and analyses data and generates similar results if the new pattern matches the existing patterns. Similarly, for biometric pattern recognition, using neuromorphic computing has an advantage, as it gives real-time computation of patterns with high speed, accuracy, and low power consumption. The growing demand for edge devices and lot sensors underscores the importance of energy efficiency in computing systems.

These applications often involve large numbers of sensors and devices that must operate efficiently with minimal energy consumption, due to their limited power resources and the need for prolonged battery life. According to analysis by IoT Analytics, the number of IoT connections could exceed 29 billion, by 2027, due to growing dependence of various sectors on interconnected devices. These applications involves large number of sensors and devices which needs to operate efficiently along with minimal energy consumption, as they have limited power resources. These requirements are met by neuromorphic computing as it minimizes the energy-intensive data movement between the processing and memory, which was a limitation in traditional von neuman architectures, leading to rise in demand for neuromorphic software.

Edge segment expected to have the highest share during the forecast period

Edge segment is expected to hold highest share during the forecast period. Neuromorphic computing on edge can be used in various applications. For instance, IoT devices that connect to the Internet can benefit from running code on the device itself rather than on the cloud for more efficient user interactions.

Similarly, autonomous vehicles that need to react in real time, without waiting for instructions from a server, can benefit from neuromorphic computing on edge. Medical monitoring devices that must respond in real time without waiting to hear from a cloud server would also benefit from the rapid response time of neuromorphic computing at the edge. Therefore, the increasing demand for real-time processing, low-latency responses, and energy-efficient solutions across industries like IoT, autonomous vehicles, and medical devices will drive the edge segment to dominate the neuromorphic computing market during the forecast period.

Image and video processing/computer vision segment to hold the largest share during the forecast period

Image and video processing/ computer vision holds major share in the neuromorphic computing market. The rise of smart cities is propelling deployment of surveillance systems, thus increasing the need for real-time image analysis. According to the World Economic Forum, 1.3 million people are moving to cities every week around the globe, and by 2040, 65% of the world's population will live in cities.

Today, 60% of the world's GDP comes from the 600 largest cities and these figures can be expected to expand as these cities grow and thrive. It is projected that up to 80% of further growth in developing regions will take place in urban centers. This rapid urbanization is going to lead to a force of requirement in neuromorphic computing concerning image and video processing because cities have no choice but to demand their sophisticated application for dealing with large amounts of visual data in the implementation of applications such as surveillance, traffic management, and infrastructure monitoring for safety and efficiency into crowded and complex environments.

Consumer electronics segment projected to hold the largest share during the forecast period

Consumer electronics will witness a higher share during the forecast period because of its high demand for smart, efficient, and high-performance devices. The Neuromorphic computing sector has immense advantage due to ultra-low power consumption and exceptional processing capabilities, critical to powering the next generation of consumer electronics. One such feature that is still being incorporated with consumer electronics is AI-driven features.

The most effective of these are an image and a speech recognition tool. These chips enable devices to process complex tasks locally, reducing reliance on cloud computing and enhancing user privacy and real-time performance. For example, services such as Alexa and Siri that currently rely heavily on cloud computing will directly benefit from deployment of neuromorphic chips. That would make the latency low and make these AI assistants much more efficient.

North American market expected to hold the largest share during the forecast period

North America will occupy the largest share during the forecast period due to the presence of prominent technology providers, such as IBM (US) and Intel Corporation (US), Qualcomm Technologies, Inc. (US), Advanced Micro Devices, Inc. (US), Hewlett Packard Enterprise Development LP (US), OMNIVISION (US), contributes to the market's growth in this region. These firms are researching and developing neuromorphic chips and AI solutions, leading the region into the innovation front in technology.

Increased government spending over the years to address concerns over the security of critical infrastructures and sensitive data has resulted in the adoption of neuromorphic chipsets in security applications. High consumerization of personal care products, routine checkup medical tools, and wearable devices is boosting the adoption of neuromorphic computing devices in North America, thereby driving the growth of this market.

Research Coverage

his research report categorizes the neuromorphic computing market based on offering, deployment, application, vertical, and region. The report describes the major drivers, restraints, challenges, and opportunities pertaining to the neuromorphic computing market and forecasts the same till 2030. Apart from these, the report also consists of leadership mapping and analysis of all the companies included in the neuromorphic computing ecosystem.

The report provides insights on the following pointers:

  • Analysis of key drivers (expanding cyber threats; the surge in data generation necessitating robust and scalable security solutions capable of handling large volumes of sensitive information) influencing the growth of the neuromorphic computing market.
  • Product Development/Innovation: Detailed insights on upcoming technologies, research & development activities, and new product & service launches in the neuromorphic computing market.
  • Market Development: Comprehensive information about lucrative markets - the report analysis the neuromorphic computing market across varied regions
  • Market Diversification: Exhaustive information about new products & services, untapped geographies, recent developments, and investments in the neuromorphic computing market
  • Competitive Assessment: In-depth assessment of market shares, growth strategies, and service offerings of leading players like Intel Corporation (US), IBM (US), Qualcomm Technologies, Inc. (US), Samsung Electronics Co., Ltd. (South Korea), Sony Corporation (Japan), among others in the neuromorphic computing market.

Key Attributes

Report AttributeDetails
No. of Pages259
Forecast Period2024-2030
Estimated Market Value (USD) in 2024$28.5 Million
Forecasted Market Value (USD) by 2030$1.32 Billion
Compound Annual Growth Rate89.7%
Regions CoveredGlobal

Market Dynamics

  • Drivers
    • Rising Adoption of Neuromorphic Hardware
    • Need for Alternative Approaches to Enhance Computational Power
    • Growing Application of AI and ML
    • Increasing Demand for Real-Time Data Processing and Decision-Making Capabilities
  • Restraints
    • Lack of R&D Investments
    • Complexity of Algorithms
    • Shortage of Educational Resources and Training Opportunities
  • Opportunities
    • Ability to Withstand Harsh Conditions of Space
    • Increasing Adoption in Healthcare Sector
    • Ability to Automate Complex Decision-Making Processes in Cybersecurity Operations
    • Integration of Neuroplasticity into Neuromorphic Computing
  • Challenges
    • Complications Associated with Software Development
    • Complexities Linked with Developing Computational Models

Case Study Analysis

  • Intel Labs Offered Lava Neuromorphic Framework to Concordia University That Optimized Hyperparameters for Large Scale Problems
  • Intel Labs and Cornell University Collaborated to Train Intel's Loihi Neuromorphic Chip to Identify Hazardous Chemicals Based on Their Scents
  • Tu/E and Northwestern University Implemented Neuromorphic Biosensors Capable of On-Chip Learning That Improved Efficiency and Accuracy

Additional Insights Covered

  • Trends/Disruptions Impacting Customer Business
  • Pricing Analysis
  • Value Chain Analysis
  • Ecosystem Analysis
  • Investment and Funding Scenario
  • Technology Analysis
  • Patent Analysis
  • Trade Analysis
  • Key Conferences and Events, 2025-2026
  • Regulatory Landscape
  • Key Stakeholders and Buying Criteria

Companies Featured

  • Intel Corporation
  • IBM
  • Qualcomm Technologies, Inc.
  • Samsung Electronics Co. Ltd.
  • Sony Corporation
  • Brainchip, Inc.
  • Synsense
  • Mediatek Inc.
  • NXP Semiconductors
  • Advanced Micro Devices, Inc.
  • Hewlett Packard Enterprise Development L.P.
  • Omnivision
  • Innatera Nanosystems B.V.
  • General Vision Inc.
  • Applied Brain Research, Inc.
  • Numenta
  • Aspinity
  • Natural Intelligence
  • Grai Matter Labs
  • Prophesee.AI
  • Microchip Technology Inc.
  • Memcomputing, Inc.
  • Cognixion
  • Neuropixels
  • Spinncloud Systems
  • Polyn Technology

For more information about this report visit https://www.researchandmarkets.com/r/oef582

About ResearchAndMarkets.com
ResearchAndMarkets.com is the world's leading source for international market research reports and market data. We provide you with the latest data on international and regional markets, key industries, the top companies, new products and the latest trends.

Attachment

 
Neuromorphic Computing Market

Contact Data

Recommended Reading